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INTRODUCTION

BACKGROUND
Factors Related to IBD Pathogenesis Connecting Transsulfu-
ration Homeostasis:

Environment: Our bowel is challenged daily with a load of 
foods, primarily sourced from the environment. Many food 
components contain sulfides, polysulfide compounds, which 
ultimately breakdown to generate gaseous H2S in situ [1, 2]. 
Hydrogen sulfide can interact with metabolic cytochrome 
c oxidase and carbonic anhydrase, by chelating with metal-
binding porphyrin cofactor [3]. Evolutionarily, H2S has been 
viewed as an important prebiotic element [4]. In nature, H2S 
concentration increases in the deep ocean, oceanic volcanoes 
and mountain spring while the oxygen concentration decreas-
es. Importantly, hydrogen sulfide can bypass the cellular oxy-
gen demand and modulate energy production [5]. Thus, H2S 
can sense the hypoxia related changes inside the cell [6].

Micro biome: There are many micro bacteria that can produce 
H2S [7]. Some of these bacteria exist in the gut mucosal system 
of our gastrointestinal tract [8, 9]. Examples of these bacteria 
include sulfate reducing bacteria (SRB), thiobacillus, desulfo-
bacter among others. Some of this microbiota could play a po-
tent role during GI infection and inflammation, and thus could 
be one of the leading causes of IBD [8, 10-13]. Therefore, H2S 
producing colonic microbiota in the GI tract can also modulate 
the mucosal immune system, and the IBD state, by producing 
H2S or sulfur metabolites [8, 11, 13].

Immune Response: Immune surveillance in the GI tract plays 
a determining role in the progression of IBD [9, 14]. Our mu-
cosal immune checkpoint does its best by T cell activation and 
adaptive immunities, like dendritic cell, and macrophage acti-
vation to nullify the toxins components that enter in our bowl 
during food intake [15]. It stimulates the cytokine (TNF-ɑ, 
IFN-ɣ) and chemokine production by the processing of the 
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MHC class I & II peptides [10, 11]. H2S can trigger T cell activa-
tion [16]. Mammalian tissue contains enzymes, Cystathionine 
beta synthase (CBS) and Cystathionine gamma lyase (CSE) that 
can endogenously produce H2S (Figure 1) [3]. H2S has been 
implicated in many inflammatory disease conditions, such as 
pancreatitis, sepsis, and joint and pulmonary inflammation [3, 
17-19].

Figure 1: Enzymatic pathways of H2S production in mammalian cells. 
Methionine, which is derived from alimentary sources, is converted to 
S-adenosylmethionine by methionine adenosyltransferase (MAT). S-ade-
nosylmethionine is subsequently hydrolysed to homocysteine by glycine 
N-methyltransferase (GNMT). Cystathionine-synthase (CBS) catalyses 
the production of cystathionine by transferring serine to homocysteine. 
Cystathionine-lyase (CSE), a pyridoxal 5’-phosphate-dependent enzyme, 
subsequently converts cystathionine to cysteine (Cys). CSE catalyses a -di-
sulphide elimination reaction that results in the production of pyruvate, 
NH4+ and thio cysteine. Thiol cysteine may react with cysteine or other 
thiols to form hydrogen sulphide (H2S). One pathway of cysteine metab-
olism involves its oxidation to cysteine sulphinate by cysteine deoxygen-
ase (CDO), which then gets further converted to hypotaurine by cysteine 
sulphinate decarboxylase (CSD), and subsequently to taurine by a non-
enzymatic reaction or by hypotaurine dehydrogenase (HDH). The above 
reactions predominantly take place in the cytosol. In the mitochondria, 
cysteine can get converted to 3-mercaptopyruvate by aspartate amino-
transferase (AAT), which can then be converted to H2S by 3-mercapto-
pyruvate sulphur transferase (MPST). Sulphide, via non-enzymatic reac-
tions, gets metabolized to thiosulphate (one molecule of sulphide yields 
two molecules of thiosulphate), which then gets converted to sulphite 
by thiosulphate reductase (TSR), for instance in liver, kidney or brain tis-
sues or thiosulphate sulphurtransferase (TSST), which is predominantly 
expressed in the liver. The conversion of cysteine sulphinate to sulphinyl 
pyruvate by AAT, followed by a non-enzymatic reaction, can also yield sul-
phite. Sulphite gets oxidized to sulphate by sulphite oxidase (SO) by a glu-
tathione (GSH)-dependent process. H2S can also yield protein adducts, 
and can be converted to methylmercaptan and dimethyldisulphide by 
thiol-S-methyltransferase (TSMT). Non-enzymatic oxidation of sulphide 
can also yield the generation of polysulphides and elemental sulphur 

(S0). Reprinted with permission from Ref (3), Csaba Szabo. Hydrogen sul-
fide and its therapeutic potential; Nature review drug discovery. 2007, 6 
(11), 917-935. Copyright© 2016 Nature Publishing Group (npg).

Genome: Given the recent understanding on how several 
genomic alterations play a key role in the pathophysiological 
phenotype of many diseases, more targeted therapy can be 
achieved in IBD. The metabolic burden could trigger unfold-
ed protein response (UPR) and thus (endoplasmic reticulum) 
ER stress to the colonic tissue. This event could lead to the 
upregulation (EIF2A, ATF6, IRE1, and PERK) and down regula-
tion of several genes [10, 20]. H2S can also cause ER stress by 
protein sulfhydration of protein tyrosine phosphatase 1B (PT-
P1B), a newly identified post translational modification [21]. 
Additionally, homocysteine, a component of sulfur amino acid 
metabolism, is also known to trigger ER stress [22]. Homocys-
teine is found to be high in fistula patients and possibly modu-
lates methionine dependent genomic alteration [23, 24]. H2S 
mediated sulfhydration of transcription factor (NF-kB) leads 
to the induction of anti-apoptotic genes [25, 26]. H2S can even 
inhibit the phenyl isothiocyanate (cancer preventive) medi-
ated apoptosis of colon cancer [27]. Recent reports also show 
that CBS plays a pivotal role in the chemo resistance of various 
cancers [28, 29]. This raises the possibility that the antimicro-
bial agents that initially cure the gut mucosal inflammation 
during IBD, might develop resistance, possibly by sulfur amino 
acid metabolite.

Maturation of IBD by Transsulfuration and Sulfide Homeo-
stasis: 
Hydrogen sulfide can activate the macrophages and T cell to 
produce the pro-inflammatory cytokines (TNF-ɑ, IL-1β, IL-6) 
[16, 19]. The gut mucosal bacteria can also produce harmful 
chemokine and cytokines after activation [8]. Thus, it impli-
cates that over the progression of IBD, H2S acts as an pro-in-
flammatory molecule (scheme 1) [30]. At advanced stages of 
the disease, endogenous formation of H2S could be augment-
ed due to increase of CBS transcriptome, as observed in colon 
cancer [31]. In pathological condition, excess sulfide could be 
further pumped out by gut mucosal bacteria to promote H2S 
production [13, 32, 33]. H2S can induce ER stress by NF-kB ac-
tivation and protein sulfhydration during reductive stress to 
adjust the redox homeostasis (scheme 1) [25, 26]. Hydrogen 
sulfide modified NF-kB leads to the anti-apoptotic effect of 
the cell by protein sulfhydration. The protein sulfhydration 
by H2S might impact many important cellular events, such as 
autophagy, lipophagy and other quality control genomic loci, 
including H2S synthesizing genes (CBS) [20, 34]. Additionally, 
the upregulation of homocysteine can cause ER stress and al-
teration of sterol-triglyceride synthesizing genes [22]. H2S me-
diated sulfhydration and sulfation of targets proteins possibly 
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cause the chemo attraction of immune cells [35]. Beside H2S, 
it’s metabolites (thiosulfate, sulfite, and sulfate), could also 
modify protein (tyrosine sulfation) and initiate the immune 
cell infiltration to trigger inflammation [35, 36]. However, sulf-
hydration or sulfation guided prolonged infiltration of immune 
cell to the colonic tissue, could direct the IBD towards an auto 
immune disorder. Cellular hypoxia can also facilitate the muco-
sal colonic damage by altering oxygen gradient and metabolic 
junctions, thus trigger inflammation to the bowl.37 Impor-
tantly, It has been reported that hydrogen sulfide can bypass 
the metabolic oxygen demand and modulate energy produc-
tion at mitochondria [5, 29, 31]. Being a pre-biotic element 
and same family member of periodic table (group VI/16), it is 
possible that nature has evolutionarily preserved the sulfide 
generation either to mimic the oxygen demand during cellular 
hypoxia (scheme 1). Therefore, under hypoxic condition, the 
cellular environment can shift towards augmented production 
of H2S and H2S producing enzymes CBS to aggravate the se-
verity of IBD. In addition, the microbiota can produce H2S to 
overcome mucosal barrier in the microenvironment leading 
to IBD progression. Suppressing H2S production could prevent 
excess sulfhydration mediated post-translational modification 
of protein. Inhibition of CBS could also impact on post ge-
nomic modulation of DNA methylation landscape (scheme 1) 
during IBD (such as hypo or hyper methylation) as observed in 
other chronic liver disease [38, 39]. An imbalance in sulfur ho-
meostasis could be pivotal in the advancement of IDB. Hence, 
CBS inhibition can diminish the H2S synthesis and many other 
sulfur metabolite related alternation of cell signaling events, 
thereby preventing the aggressive onset of IBD.

Scheme 1: Novel treatment strategy for IBD management by targeting CBS; 

Role of hydrogen sulfide and its metabolite, protein sulfhydration and 
endogenous H2S producing machinery (CBS/CSE) in advancement of IBD 
and possible and non-invasive bio-marker for health risk assessment for 
IBD. Upregulation of transsulfuration and hydrogen sulfide generation 
can cause excess protein sulfhydration that can causes several cascades 
of events such as immune modulation, oxygen sensing in hypoxic tissue, 
ER stress as UPR and alteration of pro-inflammatory cytokine-chemokine 
level. Imbalanced in transsulfuration can also change the epigenome by 
pushing the equilibrium toward the augmented production of methio-
nine. Generation of reactive sulfur species by combination with other 
reactive oxygen species can modify the DNA, protein and lipid to impair 
cellular redox.

Technological Advances to Monitor Transsulfuration for IBD 
Assessment: 
Hydrogen sulfide is a highly water and lipid soluble gaseous 
compound. In case of H2S poisoning, H2S and its metabolite 
S2O3

2- can be found in high concentration in urine and blood/
serum, and treatment of hydroxocobalamin can be used for 
detoxification [40, 41]. H2S can be detected in urine and stool 
[42]. Commercially developed analytical electrodes can mea-
sure H2S in various biological and preclinical samples such as 
blood, serum, and urine at low concentration in the order of 
100 nM [43]. Besides, there are several other method such 
as HPLC, colorimetry, amperometry, voltammetry, titrimet-
ric, fluorometry, turbid metric, led acetate trap analysis exits 
that is routinely used. Specially, the measurement of H2S me-
tabolite (thiosulfate, sulfate and sulfite), as used previously 
by forensic department during sulfide poisoning [40, 44-46]. 
Given recent advances in imaging, H2S can be imaged in liv-
ing mammals to locate the actuate state of inflammation in 
accordance with sulfide production [47]. A dye Sulfidefluor-5 
probe (SF5) that specifically lit up by H2S synthesis in vivo, has 
been used to image the mice during zymosan mediated in-
flammation triggered by immune filtration (Figure 2) [47]. In 
addition to this study, a chemo luminescent dye Spiro Ada-
mantane 1,2-dioxetane has been recently reported that can lit 
up by H2S generation, both in vitro and in vivo [48]. This dye 
can image H2S production both in solution (buffer) as well as 
in mice when treated with Na2S (in situ H2S generator), com-
pared to a vehicle control. This dye can be further used for 
the evaluation of several pre-clinical animal model of IBD to 
confirm whether the phenotypic onset of IDB is related to the 
endogenous production of hydrogen sulfide or not. This will 
further implicate the physiological role of H2S during IBD pro-
gression, and thereby the regulation of sulfur amino acid me-
tabolism for the development of next generation therapeutics 
for IBD management. Besides imaging, bacteriology profile of 
the sulfur regulating bacteria (such as sulfate reducing bacte-
ria (SRB), thiobacillus, desulfobacter, etc.) in feces and urine 
sample could be analyzed as the early prognostic marker of 
IBD [42, 49-51]. The micro biome culture for H2S and its me-
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tabolites in the urine and feces samples might tell us the se-
verity of the IBD [13, 42].

Figure 2: Acute inflammation impairs both tissue and cellular hydro-
gen sulfide synthesis. Tissue and cellular incorporation of SF5 probe was 
measured over 48 h in a model of zymosan-induced air pouch inflam-
mation; data are representative of two experiments done in triplicate. 
Vehicle or SF5 (100 μl; 10 μM) were injected into the pouch 30 min prior 
to whole mouse imaging with a IVIS Spectrum (Caliper Life Sciences) dur-
ing a 48 h time course (A). Fluorescence emission was measured within 
a region of interest (ROI; white dotted line) encapsulating the air pouch 
expressed as photons/sec over the time course (B). SF5 fluorescence in-
tensity in inflammatory exudates was analyzed by spectrofluorometry (C) 
and expressed as a ratio of infiltrating cell number (n = 3). Total cell num-
bers are overlaid (black points; right Y-axis). Reprinted with permission 
from Ref (47). Neil. Dufton, Jane. Natividad, Elena F. Verdu, and John L. 
Wallace. Hydrogen sulfide and resolution of acute inflammation: A com-
parative study utilizing a novel fluorescent probe, Scientific Report, 2012, 

2, 499. Copyright© 2016 Nature Publishing Group (npg).

CONCLUSION
Regulation of transsulfuration pathway by inhibiting the cys-
tathionine beta synthase (CBS) enzyme could be a potential 
target for the treatment of IBD. Targeted therapy by using 
small molecule inhibitors and gene silencing of CBS could be 
helpful to prevent the severe onset of IBD. Sulfur amino acid 
metabolite (hydrogen sulfide, thiosulfate, sulfite, sulfate and 
homocysteine) in the saliva, as well as in urine, feces could 
give us predictive warnings for the non-invasive health risk as-
sessment of IBD (scheme 1). Several methods can be adopted 
for the targeted drug delivery of small molecule inhibitors and 
gene silencer (siRNA) specific to CBS enzyme. For examples, 
siRNA or anti-sense oligonucleotide for CBS gene can be used 
with nano liposomal formulation [29]. Similarly, other formu-
lation like PLGA-PEG microsphere can be used to formulate 
the CBS siRNA or small molecule inhibitor of CBS. Given only 
few numbers of CBS specific inhibitors exists, it will be im-
portant to develop library of compounds by high throughput 
screening to come up with a potent and selective CBS specific 

inhibitors. In addition to these, many other polymer capsule 
strategies that are heavily used in the pharmaceutical industry 
can be adopted to prepare small molecule oral drugs formula-
tions for the prevention of IBD. Selective inhibition of CBS with 
differential regulation of hydrogen sulfide activity remains an 
open challenge to scientific community for future manage-
ment of IBD.
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